編集発行人／宮川 俊介 $=150-0031$ 東京都渋谷区桜丘町15－17（日本基礎技術株式会社内）TEL（03）3476－5721 FAX（03）5489－7821 ［ホームページURL］http：／／www7．ocn．ne．jp／～rta／

会長就任にあたって

㓈盤削孔技術協会会辰見波 潔

会員の皆様におかれましては，平素より協会の事業にご理解とご協力を賜り，心から感謝申し上げます。

平成20年6月11日に平成20年度通常総会が開催さ れ，平成20年度事業計画や収支予算等を滞りなくご決定 いただきました。

合わせて，新役員の改選が行われ，今後2年間会長の重責を務めさせていただくことになりました。もとより微力 ではありますが，役員の皆様とともに協会事業に取り組ん で参る所存ですので，会員の皆様のご理解とご協力をお願 い申しにげます。

当協会は，岩盤削孔の施工技術の改善•向1：と普及発展

を目指し，大口径岩盤削孔技術を有する施工業者及び機械製作会社を会員として平成元年11月に大口径岩盤削孔技術研究会として設立いたしました。会員各位のご支援を得 て，本年設立 20 周年を迎えることができました。
設立以来，（社）日本建設機械化協会建設機械化研究所
（現施工技術総合研究所）と連携をして施工実態調査等を実施し，技術資料や積算資料をとりまとめるなどして岩盤削孔技術の改善•向上と普及発展に努めて参りました。

我々を取り巻きます昨今の状況を見ますと，原油や鉱石等の輸入原料の高騰が続き，官民の建設事業への影響も大 きくなってきています。先行きの不安感を拭うことはでき ませんが，建設事業自体が不要になることはあり得ません。岩盤削孔は表に出にくい技術分野ではありますが，信頼性 の高い技術を提供することが，建設事業を通じて国民の皆様に安全•安心を提供することにつながることを肝に銘じ ，岩盤削孔技術のさらなる向上に努めるべきと考えており ます。

会員の皆様のますますのご活躍をご祈念申し上げ，ご挨拶といたします。

平成 20 年度通常総会

1．平成 20 年度通常総会
平成20年6月11H午後5時からKKRホテル東京 において，平成20年度通常総会が開催され，下記の議案について満場一致で可決いたしました。
第1号議案 平成19年度事業報告に関する件
第2号議案 平成19年度収支決算報告に関する件
第3号議案 平成20年度•平成21年度役員改選の件
第4号議案 平成20年度事業計画（案）承認の件第5号議案 平成20年度収支予算（案）承認の件事務局報告 新規入会•退会に関する件他

2．設立 10 周年記念表彰式

設立10周年記念表彰で，下記の方に感謝状•表彰状 と記念品が贈呈されました。（敬称略）

感謝状：

加納研之助（前会長）…会長として協会の指導•事業推進に貢献表彰状：
中 原 巌（副会長）…理事として協会の維持運営に貢献横山 弘介（理 事）…理事として協会の維持運営に頁献久保田修一（監 事）…監事として協会の維持運営に貢献嶋 野 亨（運営委員）…運営委員として協会の維持運営に貢献大 野 剛（連営委員）…運営委員として協会の維持運営に貢献

理 事 会

平成20年1月17日
平成19年度予算費消現況報告•他

平成20年6月11日
平戊 20 年度通常総会資料•他

委員会活動報告

1．運営委員会 2 回（継続）
平成20年2月7日～5月15日
平成19年4月から平成20年3月までの4工法施工実績表の作成，発刊
協会ニュースの審議
ホームページの審議
工法施工機械技術資料改訂の審議
総会の開催，運営
予算の審議
2．協会ニュース分科会 1 回
平成20年5月15日
協会ニュース編集計画決定
協会ニュース執筆担当者決定
3．ホームページ分科会 1 回（継続）
平成20年5月15日
内容の審議
ホームページ改訂箇所の報告
4．T法•施工機械技術資料改訂分科会 1 回（継続）
平成20年5月15日
工法•施工機械技術資料改訂の審議
5．（社）日本建設機械化協会技術委員会参加 2 回（継続）
平成20年1月25日～5月12日
大口径岩盤削孔工法の積算平成20年度版改訂審議
平成20年6月10日～7月8日 8回
大口径岩盤削孔の施工技術と積算講習会，講師派遣

成 果 品

平成19年4月から平成20年3月までの4工法施工実績表の発刊（平成20年6月11日）

大口径岩盤削孔工法•施工機械技術資料第5版追加版の発刊（平成20年2月28日）

広報活動

1．協会ニュース1回第26号（平成20年1月30円）
2．岩盤削孔技術協会 設玄 20 年の歩み（平成 20 年 6月11日）

的納前会長へ感謝状贈呈

国上交通省•総合政策局建設施 1 企面課中野課長 视辞

石㗐刖扎双㺫

（社）口本建設機械化㶸会大口驳岩舲削孔技術委員会矢作委員長 祝辞

見波会長 挨挼

岩盤削孔技術 t ！ 0 年度通常結

宮川副会長 中締め

中村工業（株）

尃移取螨役中村 安宏氏

今回は，九州地方を中心に，ロックオーガ工法，ドーナ ツオーガム法で活躍されている中村上業（株）の取締幑で あります中村安宏専務を訪ねてインタビューしました。

記者：貴社ではどうのような工事で岩盤削孔工法を使用されてますか？
中村：主に岩盤層や礫層でのSMW工事における先行削孔に使用してます。九州地方の岩盤層は，頁岩•砂岩•泥岩•花崗岩•転石と多種多様で， それぞれの特色を考慮したドーナツオーガ丁法 で鉛直精度を確保した施工をしています。また

既存地下躯体•PC杭•RC杭の破砕•引抜工事にも我社のロックオーガ「法が活躍してい ます。
記者：岩盤削孔で苦労された話を聞かせてください。
中朴：石英を含む 1 軸圧縮強度 $80 \mathrm{~N} / \mathrm{mm} 2$ の花崗岩の削孔が，大変苦労しました。ドーナツオーガと しては，国内最大級のSMD－240HPを保有し ていますが，1日に50cmしか削孔できない日 もあり，先端超硬ビットやオーガへッドの改良 を重ねての難工事でしたが，ケーシングを併用

し，鉛直精度を確保し ながら削孔ができ，あ と施工のSMW工事の ！型鋼材の建て込み精度も確保できました。
記者：施工の上で配慮してい ることを教えてくださ い。
中村：我社では特に安全管理
に力を入れています。

中村安宏氏過去の様々な災害事例 を熟知させ，災害防止に努めさせています。ま た，私達幹部によるパトロールを充実させ，作業員1人1人に，安全に対する意識の向上を図 つています。

他には，QCDSEの全てを高い次元で満足 させる為，作業員に『送り出し教育』
を実施しています。
記者：最後に何かありますか？
中村：最近では，環境問題にも迅速な対応が求められ ています。我社では，発電機にエコパックと言 う装置を設置し，使用燃料の節減や大気汚染の削減に取組えでいます。高騰する燃料費やCO2 の削減対策に有効な対策だと思います。
記者：大変お忙しい中，ありがとうございました。今後のますますのご活躍をお祈りします。
（中村工業（株）高橋 智浩）

工法•新製品紹介

スクリュードライバー中掘機併用鋼管矢板圧入工法

鋼管矢板の代表的施工方法である打撃工法は，数多くの長所があ りながら，騒咅振動の規制対象となり市街地での施工が困難となっ ている。そのため，低騒音低振動工法として，中掘り杭い法が数多 く開発されている。しかし，国内の互層地盤での施 Lにおいては度々，施工の山断や施I不可と言った問題が発生している事も事実で ある。

中掘り工法の適応土質としては，砂および砂質士，粘性土，レキ質上，シルト，有機質土などの比較的N値の変化の少ない土質に適 し，高N値が連続する地媻やレキ障害が顕著な地盤では先の問題が大きくクローズアップされる事になる。
土質調査が構造物構築のための調查であること，また，玉石等のレ キ障害か現扎ていたとしてもN値などの結果でのみ施工方法を決定付けてしまう机ト論が優先される事などがその大きな要因であり， この問題を払拭する事は不可能とも言える。
そう言った，高 N 値の連続地盤やまれに径 300 mm アンダー程度 の玉石が出現する様な玉石混じり層に鋼管矢板を施工する場合に，低騒音低振動で施工が可能な中掘り上法「スクリュードライバー中掘機併用鋼管矢板庄入工法」を開発したのでお知らせする。
スクリュードライバーは，掘削の核心となる鋼管矢板内の掘削を， スクリュードリルで行い，カプセルパイプによる大排上量を榷保す る特有の中掘り装置である。

従来の中掘りT法では，次の様な問題点がある。
（1）スクリューフィンによる連続排土を行うことからスクリュー ロッドの長ハ化に応じて掘削抵抗が増大し，特に鋼管矢板に包まれ るスクリューフィンの中に，粘性 1 が押し込まれ圧縮されたり，岩塊•下石などが入ってきたりすると，回転が阴害され孔曲がりが発生しやすく，また回転や押し込みが困難になったり，掘削不能にな ることがある。
（2）辰尺掘削を行う場合は，スクリューロッド重量や必要な同転ト ルクが增大し，三占支持式杭打機，回転装置等の規格が大型化する。 （3）オーガの回軦機構が回転䌷の最上部にあるため，重心位置が高く，転倒などの危険性が大きくなり安定性に乏しい。

それに対して本工法は，スクリュードリルをクレーン懸垂式の掘削垶置とし，鋼管矢板内に油归グリッパで回転反力を取り，カプセ ルバイプ容量分の掘削土を断続的に排十することから，
（1）スクリュードライバーのドリル長分に掘進の負荷が限定される ため，従米の中掘機等で生じていた掘別長に比例した貫入抵抗の増大がない。
（2）回転トルクか最小限で済み重心位置が低い安全な施丁ができる。 （3）スクリュードライバーでは，回転軸（シャフト部）が短いため，孔曲がりの危険性を最小限に抑止することができる。
などの利点がある。
本工法は，すでに九州新幹線緑川橋梁における鋼管矢板井筒基碟 $\phi 1000 \mathrm{~mm}, ~ \mathrm{~L}=52 \mathrm{~m}, ~ \mathrm{~N}=34$ 木の現場において長尺施上に対する施工能ノの高さを立証しており，この事により，高い耐震性の確保や洗掘対策等，既設構造物の維持補修」事や末だ施工障害の多い硬質地盤への辰只鋼管矢板の圧入施 Lに確実性の向上と，低騒音低振動施工に極めて有効であると䒓えている。
（（株）横山基礎工事 大野
剛）

STEP1

ぎきかこなり。

国土交通省技術基本計画の策定について
安全•安心な社会の実現や地球規模で深刻化する環境問題の克服など，科学技術が果たす役割への期待は近年ますます大き くなってきている。一方，少子高齢化社会の進行，グローバル競争時代の到来と国内外の経済構造の変化，財政健全化への強 い要請など，技術研究開発を取り巻く社会情勢は大きく変化し ている。

こうした中，国十交通省では，取り組むべき技術研究開発と それを推進する仕組みについて，抜本的に転換を図るため，社会資本整備室議会，交通政策審議会の技術部会における議論を踏まえて，平成 20 年度から24年度までの5年問を計画期間 とする新たな「国土交通省技術基本計再」を策定した。

国土交通省技術基本計画の概要

（国土交通省発表資料より）

ご多忙な丸井社長にお会いして
インタビューしました。
丸井重機建設（株）代表取縉役社長 丸井 靖弘

な新工法に挑戦。

■経営

当社は 3 部門で構成。「建築部門」は建築物の企画，設計，施工。公共建築•一般住宅・ホテル・マンション・事務所等。「上木部門」は十木工事の設計，施工。 河川•海岸•道路•舗装•砂防•橋梁•下水道等。
「基礎工事部門」は基礎L事の設計，施 L。既製杭•場所打ち杭•岩盤削孔•地中障害物撤去•既存杭引抜•深層混合地盤改良•地中連続壁•土留杭等。
経営理念：「わが社は和を基本理念とし信用と技術を提供する
社是：「勇気•決断•奏行」。
重大基本方針「無事故•無災害完工。コストダウンの徹底。全社‥丸」。
平成20年度スローガン：「再び地域＂No．1＂に挑戦。積極果敢。全社営業。品質•技術رの向上。社会への貢献」。

■ 社員とのコミュニケーション

「部下はリーダーの背中を見て，行動する」。後進の育成は，口々の業務の中で，リーダーが部下ひとり‥人に対して，技術力•競争力のレベルアッブを図るOJT方式により，次の世代 を支える技術者の教育を行なっている。

－信条•趣味

若い時は仕事も「虎穴に入らずんば，虎子を得ず」の気持ち でやってきたが，最近は神会情勢をふまえて「怒耐」の一言に納得。

姓名学家による鑑定では，＂宿命的運•才能•人柄•姓と名 の調和＂が大去。優れた才能と知力。強い責任感を持つ堅実な人。積極的な行動力。強い独立心。誠実温厚な人柄。思いやり の強い明るい人。優れた夏美力をもつ人とか。
趣味は，原産地日本だけでなく欧米でも熱心なファンがいる「錦鯉」の飼育に 30 年の経験をもつ。
好きな種別は紅白（白地に赤色模様），昭和三色（黒地に赤色•白色模様），大正二色（向地に赤色•黑色模様）。大き いのは黄金（単色金色）の 95 cm ，緋写（黒地に赤色模様） の 1 m 近いもの，大正三色 85 cm 等，大小 40 匹位を飼育。
「錦鯉」の全国人会品評会に出品している。（10月7日～9山，全日本愛鱗会新潟大会〈小千谷市〉）

ゴルフはハンディ 15 。優勝カップは 10 個位。日本画と趣味も多彩。

■ 今後の展望

公共建設市場の縮小で，地方の企業は厳しい収支状況に罡か れている。
会社の信用• •事の受注等は営業力は勿論，社員ひとり・人 の，ひとつ・つの仕事の積み重ねが根を張つて，大輪を咲かせ ることを念頭において行動している。
建設業の不変の原則は「無事故，無災害•顧客が安心できる品質・コスト・生産性•工期•適正な利潤」と考えられる。 この目標を達成するために，全社員が一致協力して今後も努め ていく。完成工事高について，建築部門を高め，建築部門25 $\%$ ，土木部門 25% ，基礎1：事部門 50% を目指していく。多様化•高度化する顧客のニーズに応えて，社会的責任を果 たせる企業へと成長を図っていく。

激務ゆえ健康にはくれぐれもご留意を。
（事務局 菣田誠作）

ヒルストーンエ法と既設場所打ち杭破硨工事

1．工事内容

1）工事概要
2）民間工事
3）工事場所
4）施工期間
5）元請け業者
6）施工者
7）施工数量
新設超高層マンション計画
大阪市西区于代崎橋
第一期 $\mathrm{H} 19 / 8 / 28 \sim \mathrm{H} 19 / 10 / 31$
第二期 $\mathrm{H} 20 / 2 / 27 \sim \mathrm{H} 20 / 3 / 19$
清水建設株式会社
株式会社 岡田組
既製場所打杭 $\phi 1200$ 36m 14本破砕他

新設杭の障害となる既設杭他の障害撤去。削孔径には ϕ 1300 を使用しリーダー長 24 m の設定でケーシングを継ぎ つつ，既存杭の先端深度まで破砍を実施した。

2．施工機械概要

ヒルストーン 上法は，㹬質地盤の破确を目的として開発 され，広島花崗岩に対する破砕を中心に岩盤削孔の技術と知識と経験を積んでまいりました。この技術がゆ心となり硬質地盤や地中障害の削孔に対し，ロックオーガでは行い得ない口径の破砕と深度を可能としています。ベースマシ ンに日本車輌製造DH658／DH608を使用しセンターオーガ にDH150HP，ケーシングオーガにCAM160VDなどを組合せ使用します。 $600 \sim \phi 1500$ を適用範井とし条件によ つては最大径 2000 mm まで大口径の破砕を可能としていま す。複数本ラップ施工により場所打ち杭の $\$ 3000$ の先行削孔を行うなど施工可能口径以上の形状の破砕も可能です。削孔径は，$\phi 800, ~ 1000, ~ 1200, ~ 1300, ~ 1500 \mathrm{~mm}$ を標準とし ます。岩盤削孔では大深度を掘削する必要性が少ないため比較的浅い破砕に限られますが，大トルクの機能を使用す ることで，既存躯体や場所打ち杭の破砕を中心に障害削孔
硬質地盤削孔（先行削孔，砂置換，貧配合ミルク注入破砕）などのТ，事が可能で，施丁を行っています。
$\phi 1300$ で $40 \mathrm{~m}, ~ \phi 1500$ で 30 m の深度破砕も経験しており特殊ケーシングによる継ぎ削孔では地盤などの条件により 50 m を越える削孔も可能です。

3 施工概要

既設杭は大阪の大満層を支持層として打設されており新設マンション訃画の新杭に影響する杭を撤去する必要があ った。新設杭もまた同じ深さの支持層を月的層とし確実な撤去が望まれた。周囲に閑静な住毛街が広がり施工，時間の制限並びに振動，騒音を極力避ける必要がある為，$\phi 1200$ の36mの杭を撤去できる振動の少ない工法としてヒルスト ーン工法が採用された。削孔径は $\phi 1300$ とし相判クローラ に50t吊りを用意しケーシングを継ぎつつ破砕した。実際に破砤した杭は，旧設計図面に記載の $\phi 1200 \mathrm{~L}=36.0 \mathrm{~m}$ 主筋 D19＊16本 $\sigma \mathrm{ca}=18 \mathrm{~N} / \mathrm{mm}^{2}$ からは想像出来ないほど強度が発現しており，施工に用意した宕盤ヘッドでは進捗が悪く －特殊ヘッドへ交換したり，センターオーガの規格を途中 から変更して施工を行うなど設計とは異なる現実を思い知 らされたが，施工時の振動及び騒音の計測結果では振動で 40 db 未満，騒音で 85 db 以下と基準を下回り，近隣への影響を考慮した範囲で厂事を行うことが出来，発注者からも向い評価を戴いた。

ヒルストーンエ法
（（株）岡田組 岡田 早）

長野県は昨年のNHK大河ドラマ『風林火山』で注目されま したが，今回は来年の春に七年に一度の御開帳を控えている善光寺についてご紹介したいと思います。

長野は山々に囲まれた海のない県とも言われています。
戸隠連峰の荒々しい山容を背後にうっそうと生い茂るクマ杉 は樹齢400年を数える巨木ばかりで日本神話で名高い天照大神が天の岩戸に隠された時，無双の神力でその岩戸を開け たといわれる天手力雄命（あめのたちからおのみこと）が祭 られているだけあって荘厳な気配が漂い善光寺平に降りてき ています。神聖な気と善光寺の壮大さに長野は守られている場所です。

善光寺は特定の宗派には属さず，庶民を広く受け入れ一度 お参りをすれば極楽浄土が約束される寺として善光寺さんと呼ばれ親しまれています。『遠くとも一度は詣れ善光寺』と

いわれ年間約 700 万人がその御利益を求めて参拝に訪れて います。
天台宗と浄土宗の僧が共同で本尊である絶対秘仏•一光三尊阿弥陀如来像を守っています。中央が阿弥陀如来，向かっ て右が観音菩薩，左が勢至菩薩，ひとつの光背に三躱の仏さ まがおいでになるところから『一光三尊阿弥陀如来像』と呼 ばれています。
本尊は絶対秘仏の為直接は拝めないのですが，分身とされ る前立本尊が 7 年ごとに御開帳のときだけ本堂に安置され，前立本尊と五色の善の綱で結ばれた大回向柱にふれれば本尊 と縁が結ばれるとされています。

長野は，七味唐辛子・おやき・林檎•葡萄•栗•杏•胡桃 など数々ありますが，やはり皆さんご存じのお蕎麦がなじみ深いと思います。お蕎麦の美味しい理由には3つの条件が不

可欠です。そばの育成に適した土地•泠涼な気候•水どれも長野ならではでしょう。

戸隠は年間の平均気温が低く，昼夜の温度差が激しい高冷地。おいしいそばが育つのに適した環境で，生育の頃に霧が発生する事から「霧下そば」と呼ばれる。戸隠山から澊き出 る清澄な伏流水をそば打ちに使うことで，絶妙な喉ごしと風味豊かなそばが誕生する。

メタボと騒がれている昨今，お蓄麦はとてもヘルシーと注目されていますので是非御開帳にいらして頂きご賞味くださ い。『遠くとも一度は詣れ善光寺』お待ちしております。
（（株）角 藤 川添摩子）

私の履歴書
今回は事務局がご多忙な中川専務
にインタビューしました。

（株）塩見組 専務取締役

中川隆弘（なかがわたかひろ）
昭和31年7月3日鹿見島県生まれ昭和60年（株）塩見組入社平成18年専務取締役に就任

■郷里•幼年時代•学生時代

東には温泉の熱で温められた砂の中に埋まる「砂むし」で知られる温泉地，西には美しい円錐形をした南薩摩のシンボルで「薩摩富士」とも よばれ，日本の百名山にも選ばれた秀峰，開聞岳，南には東シナ海，北 には水深233mの九州最大の湖 で，「イッシー」が棲んでいるとも いわれる池田湖をもつ景勝の池，指宿（いぶすき）市開聞町という田舎町で生まれた。
幼年時代は，夏は海水浴，魚釣
り，秋には開聞岳の山麓であけびや山桃採り等自然の中で遊んだ。
中学時代は剣道部，高校時代はラ グビー部と運動してきたので体力には自信があり，社会に出 て役立った。

■社会に出て

塩見組に入社して基礎工事（陸上施工，海上施工）の現場で経験し必要と思われ資格も収得後，営業担当としてやってきた。

専務就任後は営業部門の他技術者，技能者の育成や次世代 の若者への技術力，技能力の継承に力を入れてきた。

先見性，積極的な行動力，温厚•誠実な人柄で，仕事に取組み，顧客の信頼を得た。

■会社の歴史

誕 生：昭和 30 年，（株）塩見組として，建設業からの出発。
発 展：昭和 52 年，場所打杭を築造する「ベノト工法」を導入。
昭和55年，ドリリングバケットを使い，場所打杭を築造する「アースドリル工法」を導入。
昭和 60 年，バイブロハンマとウォータージェットを併用して杭の打込み，引抜きを行う「JV工法」を導入。
弨和 60 年，大口径岩盤を穿孔する「ドーナツオーガ工法」（一体型）を導入。
昭和61年，既製杭を庄入する「中掘圧入工法」を導入。進 化：平成 2 年，大口径岩盤を穿孔するケーシング全周回転「CD1法」を導入。
平成 3 年，大口径岩盤を穿孔する「ドーナツオーガT．法」（セパレート型）を導入。

平成 4年，自己昇降式作業台「JEP工法」（大型海上」事）を導入。
平成 7 年，白己昇降式作業台「SEP式CDT法」（海上施工）を導人。
平成12年，深層混合処理厂事（地盤改良）「エポコラム工法」を導入。

■経営

当社は2部門で構成。
－基礎 L．事部」は，1：木工事，基礎 L：事を担当。
「総合建設部」は，とび・上木工事，鋼構造物工事，鉄筋工事，舗装」事，しゅんせつ工事，水道施設工事を担当。
■社員とのコミュニケーション
現場巡回時に食事全で，コミュニケーションを画ってい
る。業務上必要な免許•資格の取得は公的機関の研修会に参加させ取得させている。日常の作業の中で，技術•技能を向上させる「OJT」を実施している。

－趣味•信条

山々仕事上の信条は「現場こそが営業」です。専業者とし て技術力，管理力，機械力，機動ノを生かして顧客に納得の頂ける仕事を行なうことです。

姓名学家による鑑定では，＂宿命的運•才能•人柄•生涯運•姓と名の調和＂が大吉。恵まれた才能，強固な意志力，
積極的な行動，先見性，着寒な発展運，明るく温厚•誠実な人柄，思いやり深く包容力があり，優れた人間関係の円満さ を持ち，財を子孫に伝える人とか。
趣味は，休日にバイクで自然の風を浴びながらゆっくり
ッーリングすること。

－今後の展望

北九州はわが国黎明期における文化の先進地域として発達 してきた。
近年は首都圏，中京圏，関西圏に次ぐ…大経済圏を形成する に至っている。その中核の地に本拠を構えてきた私どもは，
このような発展の歴史に微力ながらその一端を担えたことを誇りとし，また自信を持って新たな領域へとチャレンジして いくことを決意している。
さらに業界の重要なテーマの一つである自然との調和を大前提とした開発発展に全力を尽くし，新たなる空間の創造に躍進していく所存です。
激務ゆえ健康にはくれぐれもご留意を。
（事務局 葭田 誠作）

